🔥This is a new era we live in 🥲 Open-source Auto-GPT: Task-Driven Autonomous AI Agents 🤖 Different forms of these AI agents have been developed in the past couple of weeks. Three trending AutoGPT Projects: 🔖 Clone them on GitHub: Significant Gravitas’ Auto-GPT Mini Yohei’s BabyAGI 🤗 Microsoft’s JARVIS An alternative to having Auto GPT locally is AgentGPT, a web UI for AutoGPT, (yes needs your OpenAI API key). - It can assign tasks to itself - Can search the web unattended - It can improve itself - Agents collaborate to complete tasks - Long+short-term “memory” management - It’s experimental & open-source - They are based on GPT-4 Qs? Ask away! #bigdataqueen #autogpt #chatgpt #gpt4 #nlproc #ai #generativeai #machinelearning #datascience #computerscience #artificialintelligence #techtok
BDQ: Break into AI/ML
@bigdataqueenML/AI ⬆️ 230K IG 🤖 ML Research PhD @Amazon Alexa AI Founder @bdq.ai | VIEWS=OWN
🔗 https://linktr.ee/BigDataQueen ↗🔎 Détails (profil + refresh) ouvrir
✨ Your Ultimate Data Science Roadmap ✨ Lets first see how this roadmap is different from all other roadmaps you see 🔥 👉 Other roadmaps might say: start with math and stats in the beginning, and holding on to real-life practice until you get the fundamentals! 🚫⛔️ You’ll feel overwhelmed and frustrated before you even got started. 👎 👉 Others might say: “don’t worry about math in the beginning, start with open source models, get your hands dirty, then back to math only when needed” 🚫⛔️ you’ll not be a competent scientist as a result, and you can’t debug modeling issues when they arise without linear algebra, calculus and inferential stats knowledge 👎 Now here comes BDQ roadmap 🚀 Your learning has two parallel tracks: 🔹Machine Learning Theory Stack 🔹Coding Practical Stack 🥇In parallel you’ll learn: 1. math/stats 🤝 data structures and algos 2. inferential stats 🤝 Python 101 3. ML theory 🤝 Python ML libraries 4. DL theory 🤝 DL Python libraries) I am prepping a comprehensive reel on all math/stats requirements ✅ 1️⃣ Main conventional ML algos, which are the absolute pre-requisites to DL. (Jumping straight to DL is not BDQ approved) 🔸Linear Regression 🔸Logistic Regression 🔸Decision Tree 🔸Random Forest 🔸SVM 🔸Naive Bayes 🔸kNN 🔸K-Means 🔸Boosting techniques 🔖 Learn these from: 👉 Machine Learning specialization by university of Washington: https://www.coursera.org/specializations/machine-learning (Optional) Move on to basics of DL algos: 🔸Basics of neural networks, starting from perceptrons 🔸CNNs, RNNs/LSTMs 🔸If NLP focus: Transformers and generative AI 🔖 Learn the basics from: 👉 Intro to Deep Learning by MIT: http://introtodeeplearning.com For coding you’ll need: 🔖 Data structures and algorithms 🔖 Python Data analytics libraries: NumPy, Pandas 🔖 Python ML and DL libs: SkLearn, PyTorch/TensorFlow We will dive deep into coding stack and generative AI in the upcoming posts. #bigdataqueen #datascience #machinelearning #datascientist #dataanalytics #datasciencetok #dataanalysis
- Je compte uniquement les vidéos ≥ 60 secondes (tu m’as dit que <60s = pas pris en compte).
- Calcul sur les 30 derniers jours (dans la limite des 35 dernières vidéos qu’on a dans le JSON).
- RPM estimé : 0.82€/1k vues (range 0.57–1.06) basé sur ER + save rate + durée moyenne.
- Résultat: 0€ sur 30j (range 0€–0€), pour 0 vues éligibles et 0 vidéos ≥60s.
- Emoji + note /10 = performance globale de la vidéo (views + ER + saves).
- ER = (Likes + Commentaires + Partages) / Vues • Save rate = Sauvegardes / Vues.
- Badges “Au-dessus / En dessous” = comparaison directe à la moyenne de TON compte.
Importe ta vidéo, et Vexub génère une vidéo sous-titrée prête pour TikTok, Reels ou Shorts. Pas de montage, pas de prise de tête.
- Reconnaissance vocale IA → texte propre
- Sous-titres syncro automatiquement sur la vidéo
- Format vertical optimisé pour les vues